Three-Dimensional Optical Mapping of Nanoparticle Distribution in Intact Tissues.

نویسندگان

  • Shrey Sindhwani
  • Abdullah Muhammad Syed
  • Stefan Wilhelm
  • Dylan R Glancy
  • Yih Yang Chen
  • Michael Dobosz
  • Warren C W Chan
چکیده

The role of tissue architecture in mediating nanoparticle transport, targeting, and biological effects is unknown due to the lack of tools for imaging nanomaterials in whole organs. Here, we developed a rapid optical mapping technique to image nanomaterials in intact organs ex vivo and in three-dimensions (3D). We engineered a high-throughput electrophoretic flow device to simultaneously transform up to 48 tissues into optically transparent structures, allowing subcellular imaging of nanomaterials more than 1 mm deep into tissues which is 25-fold greater than current techniques. A key finding is that nanomaterials can be retained in the processed tissue by chemical cross-linking of surface adsorbed serum proteins to the tissue matrix, which enables nanomaterials to be imaged with respect to cells, blood vessels, and other structures. We developed a computational algorithm to analyze and quantitatively map nanomaterial distribution. This method can be universally applied to visualize the distribution and interactions of materials in whole tissues and animals including such applications as the imaging of nanomaterials, tissue engineered constructs, and biosensors within their intact biological environment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational simulations of nanoparticle transport in a three-dimensional capillary network

Objective(s): Multifunctional nanomedicine is the new generation of medicine, which is remarkably promising and associated with the minimum toxicity of targeted therapy. Distribution and transport of nanoparticles (NPs) in the blood flow are essential to the evaluation of delivery efficacy. Materials and Methods: In the present study, we initially designed a phantom based on Murray’s mini...

متن کامل

Internal Surface Measurement of Nanoparticle with Polarization-interferometric Nonlinear Confocal Microscope

Polarization-interferometric nonlinear confocal microscopy is proposed for measuring a nano-sized particle with optical anisotropy. The anisotropy in the particle was spectroscopically imaged through a three-dimensional distribution of third-order nonlinear dielectric polarization photoinduced. Keywords—nanoparticle, optical storage, microscope

متن کامل

Use of three-dimensional ultrasonography of the eye and measurement of optical long axis in dog

This study was conducted to determine the use of three-dimensional ultrasonography (3DU) in ocular imaging of the dog and measuring of its optical axis. 12 healthy mixed-breed dogs including 6 males and 6 females were studied. 3DU of the eyes were done using a 5–12 MHz linear trapezoid transducer. 3DU of the eyes were evaluated and the normal optical long axis through a line between the cornea ...

متن کامل

Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles.

In this paper we investigate for the first time the near-field optical behavior of two-dimensional Fibonacci plasmonic lattices fabricated by electron-beam lithography on transparent quartz substrates. In particular, by performing near-field optical microscopy measurements and three dimensional Finite Difference Time Domain simulations we demonstrate that near-field coupling of nanoparticle dim...

متن کامل

Degenerate four waves mixing in multilayer nanoshell

We will present a detailed investigation of intersubband transitions process in core-multi shells quantum dots. The confined wave functions and eigenenergies of electrons in quantum dots have been calculated under the effective-mass approximation by solving a three-dimensional Schrodinger equation. Excellent dependence is found between size effects, time relaxation and degenerate four wave mixi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS nano

دوره 10 5  شماره 

صفحات  -

تاریخ انتشار 2016